Modeling of Multihop Wireless Sensor Networks with MAC, Queuing, and Cooperation

نویسندگان

  • Jian Lin
  • Mary Ann Weitnauer
چکیده

We present a Markovian decision process (MDP) framework for multihop wireless sensor networks (MHWSNs) to bound the network performance of both energy constrained (EC) networks and energy harvesting (EH) networks, both with and without relay cooperation. The model provides the fundamental performance limit that a MHWSN can theoretically achieve, under the general constraints from medium access control, routing, and energy harvesting. We observe that the analyses for EC and EH networks fall into two branches of MDP theory, which are finite-horizon process and infinite-horizon process, respectively. The performance metrics for EC and EH networks are different. For EC networks, an appropriate metric is the network lifetime; for EH networks, an appropriate metric is, for example, the network throughput. To efficiently solve the models with high dimension, for the EC networks, we propose a novel computational algorithm by taking advantage of the stochastic shortest path structure of the problem; for the EH networks, we propose a dual linear programming based algorithm by considering the sparsity of the transitionmatrix. Under the unifiedMDP framework, numerical results demonstrate the advantages of cooperation for the optimal performance, in both EC and EH networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-channel Medium Access Control Protocols for Wireless Sensor Networks: A Survey

Extensive researches on Wireless Sensor Networks (WSNs) have been performed and many techniques have been developed for the data link (MAC) layer. Most of them assume single-channel MAC protocols. In the usual dense deployment of the sensor networks, single-channel MAC protocols may be deficient because of radio collisions and limited bandwidth. Hence, using multiple channels can significantly ...

متن کامل

Multi-channel Medium Access Control Protocols for Wireless Sensor Networks: A Survey

Extensive researches on Wireless Sensor Networks (WSNs) have been performed and many techniques have been developed for the data link (MAC) layer. Most of them assume single-channel MAC protocols. In the usual dense deployment of the sensor networks, single-channel MAC protocols may be deficient because of radio collisions and limited bandwidth. Hence, using multiple channels can significantly ...

متن کامل

Modeling and Performance Evaluation of Energy Consumption in S-MAC Protocol Using Generalized Stochastic Petri Nets

One of the features of wireless sensor networks is that the nodes in this network have limited power sources. Therefore, assessment of energy consumption in these networks is very important. What has been common practice has been the use of traditional simulators to evaluate the energy consumption of the nodes in these networks. Simulators often have problems such as fluctuating output values i...

متن کامل

Unauthenticated event detection in wireless sensor networks using sensors co-coverage

Wireless Sensor Networks (WSNs) offer inherent packet redundancy since each point within the network area is covered by more than one sensor node. This phenomenon, which is known as sensors co-coverage, is used in this paper to detect unauthenticated events. Unauthenticated event broadcasting in a WSN imposes network congestion, worsens the packet loss rate, and increases the network energy con...

متن کامل

Game Theory based Energy Efficient Hybrid MAC Protocol for Lifetime Enhancement of Wireless Sensor Network

Wireless Sensor Networks (WSNs) comprising of tiny, power-constrained nodes are getting very popular due to their potential uses in wide applications like monitoring of environmental conditions, various military and civilian applications. The critical issue in the node is energy consumption since it is operated using battery, therefore its lifetime should be maximized for effective utilization ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJDSN

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2016